AS

Mathematics

MFP2- Further Pure 2
Mark scheme

6360
June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk
$\left.\begin{array}{ll}\text { Key to mark scheme abbreviations } \\ \text { M } & \begin{array}{l}\text { mark is for method } \\ \text { dM }\end{array} \\ \text { mark is dependent on one or more } \\ \text { M marks and is for method } \\ \text { mark is dependent on } \mathbf{M} \text { or dM } \\ \text { marks and is for accuracy } \\ \text { mark is independent of } \mathbf{M} \text { or dM } \\ \text { marks and is for method and }\end{array}\right\}$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q1 \& Solution \& Mark \& Total \& Comment

\hline (a)

(b) \& \[
$$
\begin{aligned}
& \mathrm{f}(r-1)=\frac{1}{(2 r+1)(2 r+3)} \\
& \mathrm{f}(r-1)-\mathrm{f}(r)=\frac{2 r+5-(2 r+1)}{(2 r+1)(2 r+3)(2 r+5)} \\
& =\frac{4}{(2 r+1)(2 r+3)(2 r+5)} \\
& \mathrm{f}(0)-\mathrm{f}(1)+\mathrm{f}(1)-\mathrm{f}(2)+\ldots \text { or } \\
& \frac{1}{3 \times 5}-\frac{1}{5 \times 7}+\frac{1}{5 \times 7}-\frac{1}{7 \times 9}+\ldots \\
& {[A]\left\{\frac{1}{3 \times 5} \ldots-\frac{1}{(2 N+3)(2 N+5)}\right\}} \\
& \frac{1}{60}-\frac{1}{4(2 N+3)(2 N+5)} \quad \text { OE }
\end{aligned}
$$

\] \& | A1 cso |
| :--- |
| M1 |
| dM1 |
| A1 | \& 2

3 \& | $\mathrm{f}(r-1)$ correct and attempt at common denominator |
| :--- |
| correct use of brackets and $k=4$ correct |
| clear attempt to use method of differences (generous) |
| may be seen on several lines with terms cancelled; may have r, n for N for dM1 |
| must have N |

\hline \& Total \& \& 5 \&

\hline (a)

(b) \& \multicolumn{4}{|l|}{| For A1cso, denominator must have factors in order given and numerator must be 4 or perhaps k with $k=4$ stated. |
| :--- |
| Withhold dM1 if errors seen in terms cancelled |
| Example $\frac{1}{3 \times 5}-\frac{1}{5 \times \varnothing}+\frac{1}{5 \times \bar{\chi}}-\frac{1}{6 \times q}+\ldots-\frac{1}{(2 N+3)(2 N+5)}$ scores M1 dM0 and hence A0 |
| Final A1 is earned for $\frac{1}{4}\left\{\frac{1}{15}-\frac{1}{(2 N+3)(2 N+5)}\right\}, \frac{N(N+4)}{15(2 N+3)(2 N+5)} \mathbf{O E}$ |}

\hline
\end{tabular}

For $\mathbf{B 1}$, must mention here or later that the result is "true when $n=1$ "; it is not enough to simply say "true for all integers $n \ldots 1$ " at the end to earn this $\mathbf{B 1}$ mark - this on its own earns $\mathbf{B 0}$.

Condone statements such as "it works for $n=1$ " or "therefore RHS=LHS" for B1 mark but withhold E1 mark; however simply putting a "tick" earns B0 and hence E0.

Alternative to $\left({ }^{(* * *)}\right.$ is "therefore true for all positive integers n " or "so true for all integers $n \ldots 1$ " etc Accept set notation such as "true $\forall n \in \square^{+}$" etc
However "so true for all $n \ldots 1$ " is incorrect and immediately scores E0.
Allow A1 marks for incorrect/missing/poor use of brackets if recovered later, but withhold $\mathbf{E 1}$ mark..
May define $\mathrm{P}(k)$ as the "proposition that the formula is true when $n=k$ " and earn full marks. However, if $\mathrm{P}(k)$ is not defined then allow $\mathbf{B} 1$ for showing $\mathrm{P}(1)$ is true but withhold $\mathbf{E} 1$ mark.

\begin{tabular}{|c|c|c|c|c|}
\hline Q 4 \& Solution \& Mark \& Total \& Comment

\hline (a)

(b) \& | $\left[\left(1+\mathrm{e}^{2 x}\right)\left(1+\mathrm{e}^{-2 x}\right)=\right] \quad 1+\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}+1$ |
| :--- |
| Use of $\quad \mathrm{e}^{2 x}+\mathrm{e}^{-2 x}=2 \cosh 2 x$ OE $\begin{aligned} & {\left[\left(1+\mathrm{e}^{2 x}\right)\left(1+\mathrm{e}^{-2 x}\right)=\right] 4 \cosh ^{2} x} \\ & \int k \operatorname{sech}^{2} x(\mathrm{~d} x) \\ & \frac{1}{4} \tanh x \\ & \tanh 1=\frac{\mathrm{e}^{(1)}-\mathrm{e}^{-1}}{\mathrm{e}^{(1)}+\mathrm{e}^{-1}} \\ & \text { Integral }==\frac{\mathrm{e}-\mathrm{e}^{-1}}{4\left(\mathrm{e}+\mathrm{e}^{-1}\right)} \text { or } \frac{\mathrm{e}^{2}-1}{4\left(\mathrm{e}^{2}+1\right)} \quad \mathbf{O E} \end{aligned}$ | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { dM1 } \\
\text { A1 }
\end{gathered}
$$

\] \& 4 \& | or $\left(1+\mathrm{e}^{2 x}\right)=\mathrm{e}^{x}\left(\mathrm{e}^{-x}+\mathrm{e}^{x}\right)$ |
| :--- |
| or $\left(1+\mathrm{e}^{-2 x}\right)=\mathrm{e}^{-x}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ |
| or use of $\cosh x=\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$ OE |
| or $\cosh ^{2} x=\frac{1}{4}\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right)$ |
| accept $(2 \cosh x)^{2} \quad(*)$ |
| integrand of form $k \operatorname{sech}^{2} x$ |
| $\tanh (1)$ written correctly in terms of e condone e^{1} for $\mathbf{d M 1}$ |
| must be in terms of e and not left with e^{1} or $\frac{1}{2}$ in numerator and denominator |

\hline \& Total \& \& 7 \&

\hline (a)

(b) \& \multicolumn{4}{|l|}{| Any formula in $\cosh x$ or $\cosh 2 x$ must be correct for M1 |
| :--- |
| (*) May earn M1 in part (b) and even A1 if $4 \cosh ^{2} x$ is explicitly seen. |
| Accept $\frac{1}{\mathrm{e}}$ for e^{-1} for final A1 |}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q 7 \& Solution \& Mark \& Total \& Comment \\
\hline (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \frac{\mathrm{d} x}{\mathrm{~d} t}=2 \sin 2 t ; \frac{\mathrm{d} y}{\mathrm{~d} t}=4 \cos t \\
\& \left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=(2 \sin 2 t)^{2}+(4 \cos t)^{2}
\end{aligned}
\] \\
Use of \(\sin 2 t=2 \sin t \cos t\)
\[
\begin{aligned}
\& \left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=16 \cos ^{2} t \sin ^{2} t+16 \cos ^{2} t \\
\& 16 \cos ^{2} t\left(1+\sin ^{2} t\right) \text { or } 4 \cos t \sqrt{\left(1+\sin ^{2} t\right)} \\
\& S=32 \pi \int_{0}^{\frac{\pi}{2}} \sin t \cos t \sqrt{\left(1+\sin ^{2} t\right)} \mathrm{d} t
\end{aligned}
\]
\[
\begin{gathered}
p\left(1+\sin ^{2} t\right)^{\frac{3}{2}} \\
{\left[\frac{k \pi}{3}\left(1+\sin ^{2} t\right)^{\frac{3}{2}}\right]} \\
\frac{k \pi\left(2^{\frac{3}{2}}-1\right)}{3} \\
(S=) \frac{\pi(64 \sqrt{2}-32)}{3}
\end{gathered}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
dM1 \\
A1 \\
A1 \\
M1 \\
A1F \\
dM1 \\
A1
\end{tabular} \& 5

4 \& | PI by next line; make sure there are no minus signs here or inside brackets on next line |
| :--- |
| their $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}$ |
| condone sign error in earlier differentiation for first A1 only |
| AG be convinced - must have $S=\ldots, 32 \pi$ $\mathrm{d} t$ and limits and $1+\sin ^{2} t$ with terms in that order but condone $\sqrt{1+\sin ^{2} t}$ |
| where p is a constant |
| FT their k (for 32) from part (a) |
| correct sub of limits into expression of form $p\left(1+\sin ^{2} t\right)^{\frac{3}{2}}$ |
| condone $\frac{32 \pi(2 \sqrt{2}-1)}{3}$ |

\hline \& Total \& \& 9 \&

\hline (a)

(b) \& \multicolumn{4}{|l|}{| A candidate starting with $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=(-2 \sin 2 t)^{2}+(4 \cos t)^{2}$, for example, and concluding with correct final expression can score at most B0 M1 dM1 A1 A0 |
| :--- |
| May have " $S=$ " on earlier line with equals signs on each line before final line for A1 Condone " $S_{x}=$ " since this is given in the Formulae booklet. |
| May use substitution such as $u=1+\sin ^{2} t$ integrating to $p u^{\frac{3}{2}}$ for M1 and $\frac{k \pi}{3} u^{\frac{3}{2}}$ for A1F or use of double angles with M1 for $p(3-\cos 2 t)^{\frac{3}{2}}$ A1F for $\frac{k \pi \sqrt{2}}{3}(3-\cos 2 t)^{\frac{3}{2}}$ etc |}

\hline
\end{tabular}

Q 8	Solution	Mark	Total	Comment
(a)(i)	$[\alpha \beta+\beta \gamma+\gamma \alpha=] \quad \frac{5}{2}$	B1	1	
(ii)	$[\alpha \beta \gamma=]-\frac{3}{2}$	B1	1	
(b)	$\sum \frac{1}{\alpha}=\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}$	M1		or use of $z=1 / y$ etc to obtain $3 y^{3}+5 y^{2}+2=0$.
	$=-\frac{5}{3}$	A1cso	2	must follow from correct part (a) values unless starts again with $z=1 / y$ etc.
(c)(i)	$2 z\left(\frac{1}{x}\right)+5 z+3=0 \Rightarrow z\left(\frac{2}{x}+5\right)+3=0$	M1		substituting $z^{2}=\frac{1}{x}$ into equation and attempt to collect terms in z
	$z^{2}\left(\frac{2}{x}+5\right)^{2}=9$ and attempt to eliminate z	dM1		squaring both sides \& only in terms of \boldsymbol{x}

Alternative : $z\left(2 z^{2}+5\right)=-3 \&$ squaring first $z^{2}\left(2 z^{2}+5\right)^{2}=9 \mathbf{M 1}$ then substituting $z^{2}=\frac{1}{x} \quad$ dM1

$\frac{1}{x}\left(\frac{2}{x}+5\right)^{2}=9$	A1		correct with z eliminated
$\begin{aligned} & (2+5 x)^{2}=9 x^{3} \\ & \quad 9 x^{3}-25 x^{2}-20 x-4=0 \end{aligned}$	A1	4	$m=-20 ; \quad n=-4$
$\sum \frac{1}{\alpha^{4}}=\sum \alpha_{1}{ }^{2}$	B1		recognition that sum of squares of roots of equation in x required
$=\left(\alpha_{1}+\beta_{1}+\gamma_{1}\right)^{2}-2\left(\alpha_{1} \beta_{1}+\beta_{1} \gamma_{1}+\gamma_{1} \alpha_{1}\right)$	M1		correct identity but must have earned B1
$=\left(\frac{25}{9}\right)^{2}-\frac{2 \times \text { "their" } m}{9}$	dM1		correct substitution FT their m
$=\frac{985}{81}$	A1cso	4	
Total		12	

(c)(i) Alternative: condone use of $z=\frac{1}{\sqrt{x}}$ giving $\frac{2}{x \sqrt{x}}+\frac{5}{\sqrt{x}}+3=0$ or $2+5 x+3 x \sqrt{x}=0 \quad$ M1 then $\frac{1}{x}\left(\frac{2}{x}+5\right)^{2}=9$ or $(2+5 x)^{2}=9 x^{3}$ dM1 A1 but only award final A1 if $z= \pm \frac{1}{\sqrt{x}}$ is used or $(2+5 x+3 x \sqrt{x})(2+5 x-3 x \sqrt{x})=0$ and expansion attempt to eliminate \sqrt{x} for dM1 then $(2+5 x)^{2}-9 x^{3}=0$ OE for A1 but only award final A1 if $z= \pm \frac{1}{\sqrt{x}}$ is used
(c)(ii) Candidates may write; Sum of roots $=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}=\frac{25}{9}$ for $\mathbf{B} \mathbf{1}$ and the identity as $\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}\right)^{2}=\left(\frac{1}{\alpha^{2}}\right)^{2}+\left(\frac{1}{\beta^{2}}\right)^{2}+\left(\frac{1}{\gamma^{2}}\right)^{2}+2\left(\frac{1}{\alpha^{2} \beta^{2}}+\frac{1}{\beta^{2} \gamma^{2}}+\frac{1}{\gamma^{2} \alpha^{2}}\right)$ OE for $\mathbf{M 1}$ even if $\mathbf{B 0}$ earned

